Could Gene Doping Be Part of Future Olympics?

THURSDAY, July 26 (HealthDay News) — Despite all the training,
sweat, dedication and sacrifice that goes into becoming an Olympic
competitor, these elite athletes also tend to have an advantage that
average sports lovers lack: superior DNA. Just like eye color or a keen
intellect, a constellation of the “right” genes can grace certain athletes
with world-class speed, strength and endurance.

But with the advent of gene therapy — technology on the cusp of
helping treat grave illnesses — are the days of “natural selection” of
super-athletes coming to an end?

Genetics and athletics experts fear that the 2012 Olympic Games,
opening Friday in London, may be the last without competitors secretly
hinging their gold medal hopes on “gene doping” — modifying their DNA to
make themselves bigger, stronger or faster — and that such gene
manipulation may one day match the use of illicit performance-enhancing
substances.

“Gene doping has been sort of smoldering as a theoretical possibility
for at least two or three sets of Olympic Games,” said Dr. Ted Friedmann,
chair of the genetics panel of the World Anti-Doping Agency. “If you ask
me how many more years it’ll be before it’s done, well, I’d say a very
long time. But how many more years before some idiot does something
stupid? That could be tomorrow,” he added.

“The technology is ripe for abuse by badly trained people,” explained
Friedmann, also director of the Center for Molecular Genetics at the
University of California, San Diego. “The chance of effectiveness if done
by current methods is almost nil.”

According to an article published July 19 in the journal Nature,
more than 200 gene variants have been associated with athletic prowess,
including a variant of the ACE gene linked to endurance and an alternative
copy of the ACTN3 gene — dubbed the “speed gene” and found in nearly
every male Olympic sprinter ever tested.

While therapeutic gene therapy — injecting foreign DNA into muscle or
bone to change a person’s genetic makeup, creating proteins that
infiltrate tissue or blood — still carries too many side effects be
widely used, cases already exist of doping where the protein (rather than
the gene that encodes it) is taken to improve performance, said Dr.
Kathryn North, an Australian researcher whose 2010 study on the ACTN3 gene
helped establish its link to sprinters and power athletes.

Examples include the manipulation of the EPO gene, which increases
hemoglobin levels, boosting blood’s oxygen-carrying capabilities, she
said. Finnish athlete Eero Mantyranta, the winner of seven Olympic
cross-country skiing medals, naturally carries such a mutation, elevating
his oxygen-carrying capacity by 25 percent to 50 percent, according to the
Nature article.

Tests to root out gene-doping are still being developed and aren’t
ready for prime time, but apparently these rogue proteins can already be
detected.

“Gene-doping is not yet a reality, but the technology to detect doping
will evolve along with the techniques to misuse the new genetic
technologies,” said North, head of the Institute for Neuroscience and
Muscle Research at the Children’s Hospital at Westmead in Australia.

Indeed, an air of inevitability about gene-doping permeates, though
Olympics officials will concentrate for the moment on the 4,500 tests
already available for banned substances in their efforts to keep the 2012
Games clean.

Robert Kersey, director of the Athletic Training Education Program at
California State University in Fullerton, predicted that the pressure to
win — twinned with monetary pressure from corporate sponsors — will
combine to make gene-doping irresistible to some world-class athletes.

“Humans are greedy and if there’s money to be made, people are willing
to take those risks,” said Kersey, also a professor of kinesiology.
“Everyone involved has the potential to make money or fame or fortune out
of it . . . you’re never going to convince every person who wants to win a
gold medal that they shouldn’t bend the rules if they feel they have a
real chance of winning.”

But North and Friedmann pointed out that merely having a favorable
gene — whether for athleticism or any other trait — doesn’t guarantee
that gene will express itself in the desired way. A specific combination
of many gene variants, in addition to training, environment and attitude,
“really make up the complex phenotype that is the elite athlete,” North
said.

Added Friedmann: “Genes work in an enormously complicated set of
interactions, and no gene works by itself. If you have the gene for speed
or endurance, all the other genes you carry that [help] or work against
that will affect how that gene expresses itself.”

More information

The U.S. Department of Energy’s Genome Program offers more about gene therapy.

You can skip to the end and leave a response. Pinging is currently not allowed.

Leave a Reply

Powered by WordPress | Designed by: Premium WordPress Themes | Thanks to Themes Gallery, Bromoney and Wordpress Themes