Ganymede |
Excerpt from latimes.com
Astronomers have found the most conclusive evidence yet that a large
watery ocean lies beneath the surface of Jupiter’s moon Ganymede.
Scientists have
suspected for decades that a subterranean ocean might slosh between the
rocky mantle and icy crust of the largest moon in our solar system, but
they had not been able to prove it definitively until now.
Using
the Hubble Telescope, a team of researchers has detected slight
fluctuations in two bands of glowing aurorae in Ganymede’s atmosphere
that they say could occur only if the moon contained a salty body of
water.
“The solar system is now looking like a pretty soggy
place,” said Jim Green, director of planetary science at NASA. “The more
we look at individual moons, the more we see that water is really in
enormous abundance.”
Ganymede is the only moon in the solar system
that has its own magnetic field. However, it is also affected by the
magnetic field of Jupiter – the giant planet next door.
The
effect of Jupiter’s magnetic field on Ganymede changes every 10 hours,
which is the length of time it takes the planet to make a full rotation
on its axis. For five hours its magnetic field points toward Ganymede,
then for another five hours it points away.
“It’s like a lighthouse,” said Joachim Saur of the University of Cologne in Germany, who led the research.
Saur
figured that these regular shifts in Jupiter’s magnetic field would
affect the position of the aurorae in Ganymede’s atmosphere differently
depending on whether or not the moon has a subsurface ocean.
Computer
models show that if Ganymede did not have a subsurface ocean, the
changes in Jupiter’s magnetic field should cause the bands of hot,
electrically charged gas to rock six degrees over a 10-hour period.
However, if the moon contained a salty ocean, it would reduce the
rocking of the auroras to just two degrees.
The reason for the
difference is that a saltwater ocean is electrically conductive and
creates a secondary magnetic field that would suppress the effects of
Jupiter’s magnetic field.
Saur
looked at measurements taken by the Hubble Telescope in 2010 and 2011
of auroras over both the north and south poles of Ganymede and saw that
the auroras only moved two degrees over a seven-hour period.
“We
ran more than 100 models on supercomputers with different parameters,
but every time we got the same result – with no ocean present the
aurorae rock by six degrees, if you add an ocean it reduces the rock to
two degrees,” Saur said at a news conference Thursday announcing the
findings.
The new technique of looking to aurorae for signs of a
liquid ocean could lead to discoveries of water on bodies far beyond our
solar system, researchers say.
“Imagine
a magnetically active star with a planet close by,” said Heidi Hammel,
executive vice president of Assn. of Universities for Research in
Astronomy. “By monitoring the auroral activity on that exoplanet we can
infer the presence of water.”
A telescope larger than Hubble may
be required to observe distant aurorae, but “now we have a tool that we
didn’t have before,” she said.
Source Article from http://feedproxy.google.com/~r/AscensionEarth2012/~3/joTubkbi47E/confirmed-jupiters-moon-ganymede-has.html
Views: 0